Using the MPEG-7 Audiovisual Description Profile (AVDP)

Werner Bailer

EBU MIM/MDN Workshop, Geneva, 20 June 2012
Contents

- MPEG-7 and the Audiovisual Description Profile (AVDP)
- Use cases and examples
- Working with AVDP
Part I
MPEG-7 and the Audiovisual Description Profile (AVDP)
Motivation (1)

- Motivated by activities of MIM/SCAIE group
 - Study and evaluation of Content analysis-based Automatic Information Extraction tools in media production
 - facilitate the introduction of new production tools based on automatic extraction of information

- Relevant tools include
 - Speech Recognition
 - Audiovisual Segmentation
 - Personality Identification
 - Semantic Detection
 - Text Recognition
 - Subject Classification
 - Format Detection
 - Named Entities Detection
 - Copy / Repetition Detection
 - Content Summarisation
 - Keyword Extraction
 - Automatic text Translation
Motivation (2)

- Automatic analysis tools generate
 - detailed time-based metadata
 - low-level audio/video features (e.g., color descriptors)

- Common metadata format is needed to
 - represent results
 - exchange between organisations
 - perform automated evaluation
MPEG-7

- Multimedia Content Description Interface
- Metadata of multimedia content
 - descriptors, description schemes
 - definition based on an extension of XML Schema
 - serialised in XML or binary format
- Multimedia description schemes (part 5)
 - content structure (decompositions, segments)
 - descriptive and technical metadata
- Visual and Audio (parts 3 and 4)
 - descriptors for visual and audio low-level features
Why MPEG-7?

- Support for describing arbitrary content structures
 - time segments, regions, moving regions
- Support for low-level feature descriptors
- Benefits of MPEG-7
 - designed as a data model, not just as an exchange format
 - broad range of applications
 - flexible, fine-grained description
 - content structuring capabilities
- Drawbacks
 - complexity: generic types, deep hierarchical structures
 - interoperability problems: several ways to describe the same, conformance to standard can only be checked on syntactic level but not on a semantic level
Why profiles for MPEG-7?

- Address issues of complexity and interoperability
- Profiles are a proven concept
 - subsets of the standard for certain functionalities and/or applications
 - cf. MPEG-2, MPEG-4
- Definition of an MPEG-7 profile
 - Selection of description tools → Profile XML Schema
 - Constraints on description tools → Profile XML Schema
 - Semantic constraints → Textual description
Design goals for a new profile

- Fulfill the requirements of MIM/SCAIE
- Harmonise earlier efforts
 - Detailed Audiovisual Profile (DAVP, proposed by JRS)
 - Metadata Production Framework (MPF from NHK)
 - share many design principles, some different implementation choices
- Simplify
 - based on experience from using DAVP and MPF
 - some included elements are never used
 - some constructs can be simplified in terms of cardinality/flexibility
- First profile based on MPEG-7 v2 (2004)
- First profile to include low-level video and audio features (pt. 3&4)
An MPEG-7 AVDP file contains:
- 0 or more descriptions of audiovisual contents
- 0 or 1 summaries of the content(s)

Describe audio, video or audiovisual content:
- no other types of multimedia content
- no collections of content
- same top-level structure for audio, video or audiovisual content

Figure 1 Top level structure
AudioVisual Description Profile – AVDP (2)

- **Modularity**
 - separate metadata produced by different tools
 - separate metadata on different abstraction level
 - separate metadata specific to one modality or valid for all
 - separate content segmentation and representative elements, e.g. shots and key frames

- **Levels**
 - 1 temporal/editorial structure
 - 2 modalities or more detailed temporal/editorial structure
 - 3 (spatio)temporal structure within modalities (if applicable)

- **Low-level features**
 - on levels 2+ in the appropriate parts of the description
AVDP description structure
High-level descriptions in AVDP

- Not using the MPEG-7 Semantic DS
- uses simpler constructs to reference external
 - classification schemes
 - controlled vocabularies
 - ontologies
 - e.g. http://tech.ebu.ch/MetadataReferenceData
Profile specification

- Profile specification document
 - list of included types
 - constraints on elements and cardinalities
 - semantic constraints on use of these types
 - semantics of description structure
 - ISO/IEC 15938-9:2005/Amd1

- Profile XML schema
 - included types
 - excluded elements, restrictions on cardinality
 - few of the semantic and structure constraints
 - expected to become ISO standard in 2012
Classification schemes

- MPEG-7 format for controlled vocabulary
- Addition classification schemes
 - identifying decompositions and segments of the content structure
 - avoid interoperability problems

<table>
<thead>
<tr>
<th>Type</th>
<th>Element/Attribute</th>
<th>Recommended CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MediaFormatType</td>
<td>MediaFormatType</td>
<td>ebu_FileFormatCS</td>
</tr>
<tr>
<td></td>
<td>VisualCoding/Format</td>
<td>ebu_videoCompressionCodeCS</td>
</tr>
<tr>
<td></td>
<td>AudioCoding/Format</td>
<td>ebu_AudioCompressionCodeCS</td>
</tr>
<tr>
<td>MediaAgentType</td>
<td>Role</td>
<td>ebu_RoleCodeCS</td>
</tr>
<tr>
<td>ClassificationType</td>
<td>Genre</td>
<td>ebu_ContentGenreCS</td>
</tr>
<tr>
<td></td>
<td>Format</td>
<td>ebu_EditorialFormatCodeCS</td>
</tr>
<tr>
<td>RelationType</td>
<td>Type</td>
<td>SegmentRelationCS</td>
</tr>
<tr>
<td>SegmentType</td>
<td>StructuralUnit</td>
<td>StructuralUnitCS</td>
</tr>
<tr>
<td>SegmentDecompositionType</td>
<td>Criteria</td>
<td>DecompositionCS</td>
</tr>
</tbody>
</table>
Part II
Use cases and examples
Basic annotation

- Shots, key frames
- Camera motion
- Editorial segments
- Text annotation
- SVAS (currently still DAVP based):
 - test version at
Basic annotation

MPEG-7 AVDP structure

- **Header**, entire programme
- **Editorial segments**, shots
- **Text annotation**
- **Visual stream of the shot**
- **Key frames**
- **Visual descriptor**
Logo detection

- Detect known logos in video
- Annotate logo occurrence and regions
- Similar to many other applications, e.g. describing detection/tracking results for
 - Faces, persons
 - Objects
 - Video text
Logo detection

MPEG-7 AVDP structure

- Header, entire programme
- Logo occurrences
- Visual stream of the occurrence
- 1+ moving regions, with 1+ trajectories
Visual quality analysis

- Detect specific content properties
 - monochrome frames, test patterns
- Detect defect events
 - drop outs, freeze frames, dust/dirt, …
- Describe impairments of segments
 - noise level, blockiness, …
- Uses built-in descriptors and extension schema
 - conformance based on MPEG-7 part 7
 - additional descriptors extend VisualDescriptor DS
Visual quality analysis

MPEG-7 AVDP structure

- **Header**, entire programme
- **Defect segments**
- **Specific segments** (black, color bars, ...)
- **Visual stream of the segment**
- **Visual descriptor**
Part III

Working with AVDP
Resources

- Example documents
- Transforming metadata to MPEG-7 AVDP
- Handling MPEG-7 documents in applications
- Validation
Examples

- Example AVDP documents
 - set of basic examples from specification
 - example instances created with tools from different organisations
 (various content analysis results)

- MIM/MDN Knowledge base
 - http://workspace.ebu.ch/display/ecmmdn/Knowledge+base+-+contributions

- MIM/SCAIE guidelines document
 - using AVDP for representing results of automatic content analysis tools
 - to be published by end of 2012
Transforming metadata to MPEG-7 AVDP

- many ways to transform the descriptions
- scripting languages (Perl, Python, etc.)
- writing a program in your favourite programming language
- ...
- if the output of the information extraction tool is XML, use XSLT
XSLT Processing

- XSL = Extensible Stylesheet Language
 - http://www.w3.org/Style/XSL/

- XSLT = XSL Transformations
 - http://www.w3.org/TR/xslt
 - version 1.0 has limitations, but wide range of tools available
 - version 2.0 supports XPath 2.0, type model based on XML schema, but lacks support in tools
 - apply an XSL to transform a XML document into another XML document, plain text, ...
 - templates match elements/structures in the input document and produce output

XSLT Processors (1)

- **Saxon**
 - Reference implementation of XSLT 2.0
 - Java and .NET

- **Xalan**
 - Java and C++
 - Command line tools and APIs
 - Useful for automation
XSLT Processors (2)

- XSLT 1.0 implemented in browsers
- XSLT support in many XML editors
- very basic:
 - XML Notepad, Cooktop (free version no longer supported)
- commercial products, partly with some XSLT debugging support
 - XML Spy, Oxygen, Stylus Studio, ...
XSL Transforms

- Step-by-step example of custom XML → AVDP
 - Tutorial @ MDN workshop 2011
 - Transforming speech to text output
 - Tools, XSLs, intermediate results
 - See MDN workshop 2011 materials: http://tech.ebu.ch/events/metadata_workshop11

- Transforms between MPEG-7 DAVP and AVDP profiles
 - MIM/MDN knowledge base

- Starting from these XSLTs useful for common tasks
 - building/changing hierarchies
 - absolute ↔ relative time, start+end ↔ start+duration
Handling MPEG-7 documents

- possible with any API for XML documents, such as SAX or DOM, e.g., Apache Xerces

- large schema, many types, heavy use of derived types
 - i.e., xsi:type attribute defines the actual type
 - cf. static vs. dynamic type in object oriented programming

- inconvenient with APIs unaware of the schema, and no type safety

- need to handle patterns (e.g. time points)
MPEG-7 Library

- C++ class library for Windows, Linux and MacOS X
- Open source (LGPL)
- Parts 2, 3, 4, 5 of MPEG-7 v1 and v2
- XML serialisation/parsing
- Typed access to nodes
 - Including access to elements of pattern types, e.g. fields of time points and durations
MPEG-7 Library

- XPath support
 - as schema aware, also create subtrees by Xpath

- Extensible
 - extensions of schema (cf. visual quality use case)
 - own implementations of certain types, e.g. implementing conversion to/from application specific types
 - example: extension for describing visual quality analysis results
MPEG-7 Library

- http://mpeg7.joanneum.at
 - download & documentation
- guide to generate a similar API for Java using XMLBeans
- pointers to other MPEG-7 resources

- used in MPEG MXM (MPEG Extensible Middleware) GenericMetadataEngine
Simple example

```c++
...
Mp7JrsArchive archive;
archive.SetEncoding("UTF-8");
archive.SetDoValidation(false);
Mp7JrsNodePtr root = archive.FromFile("test.xml");
archive.ToFile("out.xml", root);
...
```
Example: create from XPath

```csharp
Mp7JrsNodePtr root = archive.FromFile("test.xml");

Mp7JrsNodeEnum imageEnum = root->
    GetOrCreateFromXPath(X("Description[@xsi:type="ContentEntityType"]/
    MultimediaContent[@xsi:type="ImageType"]/Image"));
```
Validation

- Validation against MPEG-7 XML Schema or Profile XML Schema
 - e.g., using validator of an XML editor, Xerces, MS XML, etc.

- Many constraints of a profile cannot be represented in XML schema
 - e.g., the AudioVisual element, representing the entire content (root a/v segment) is of type AudiovisualSegmentType
 - The same type is used to represent many audiovisual segments at other places in the description
 - The specific constraints on the elements that need to be present on the root a/v segment but not on others cannot be checked
VAMP: Validation of MPEG-7 Profile Descriptions

- validate metadata documents
 - conforming to complex metadata standards such as MPEG-7
 - semantics of temporal annotations
 - beyond XML schema validation
- prevent interoperability problems
- support of MPEG-7 profiles
 - Detailed Audiovisual Profile (DAVP), PrestoSpace project
 - Audiovisual Description Profile (AVDP)
 - TRECVID format
- http://vamp.joanneum.at
VAMP – Workflow

Syntax Validation

- MPEG-7 Schema (XSD)
- MPEG-7 Profile Schema (XSD)

MPEG-7 Document (XML)

XML Parser/Validator

MPEG-7 syntax validation

Semantic Validation

- Conversion Instructions
- Profile Validation Instructions

Profile Validation Service

MPEG-7 to RDF/OWL Conversion

Semantic Constraints Check

Query Service

- Combination of XSL Transformation and Rule Engine
- Rule Engine, OWL Reasoner
- SPARQL Query Engine

Validation Report

THE INNOVATION COMPANY
VAMP Web Interface (1)

A Semantic Validation Service for MPEG-7 Profile Descriptions

1. Type the MPEG-7 Document URL:

 http://vamp.joanneum.at/data/examples/svdp_5.1_GenericAudioOrVideoDescriptions.xml

 or use the following demo example

2. Select MPEG-7 version:
 - MPEG-7 v1 (2001)
 - MPEG-7 v2 (2004)

3. Select profile:
 - DAVP
 - TRECVID
 - AVDP

4. Select semantic validation type:
 - Profile validation (default)
 - Temporal validation

 Validate!
VAMP Web Interface (2)

Result:

Validation failed: Profile Semantic Error

The input MPEG-7 document does not conform to the selected profile.

Following errors have been detected:

- **DescriptionMetadataType header must not be empty**
- **DescriptionMetadataType header that contains only confidence is only allowed in segment**

In profile AVDP the element `<Header>` with type `DescriptionMetadataType` that contains only `<Confidence>` may not be used if the parent element of the header is not a segment.

```
/Mpeg7/Description[2]/MultimediaContent/AudioVisual/TemporalDecomposition[1]/Header
```

- **MediaInformation MustBeUsedInRootSegment**
- **mediaTimeBase invalid xpath must reference MediaTime or MediaLocator**
- **mediaTimeBase xpath in root segment must reference MediaLocator in same description**
VAMP Web Interface (3)

<Description xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.ebu.ch/mpeg/AVDP/StructuralUnitCS:1"
xmlns:av="http://www.ebu.ch/mpeg/AVDP/VideoSegmentCS:1"
xmlns:video="http://www.ebu.ch/mpeg/AVDP/VideoSegmentCS:2"
xmlns:struct="http://www.ebu.ch/mpeg/AVDP/StructuralUnitCS:2"
xmlns:frag="http://www.ebu.ch/mpeg/AVDP/FragmentSegmentCS:1"
xmlns:audio="http://www.ebu.ch/mpeg/AVDP/AudioSegmentCS:1"
xmlns:content="http://www.ebu.ch/mpeg/AVDP/ContentSegmentCS:1"
xmlns:metadata="http://www.ebu.ch/mpeg/AVDP/MediaInstance/ContentSegment/VideoSegment"
xmlns:media="http://www.ebu.ch/mpeg/AVDP/MediaInstance/ContentSegment"
xmlns:image="http://www.ebu.ch/mpeg/AVDP/MediaInstance/ContentSegment/StillImage"
xmlns:still="http://www.ebu.ch/mpeg/AVDP/MediaInstance/ContentSegment/StillImage"">

<!-- This decomposition is for having general AudioSegment, VideoSegment, StillRegion -->
<VideoSegment id="shot-01v">
 <StructuralUnit href="http://www.ebu.ch/mpeg/AVDP/StructuralUnitCS:3"/>
 <MediaTime>
 <MediaIncrTimePoint>0</MediaIncrTimePoint>
 <MediaIncrDuration>1000</MediaIncrDuration>
 </MediaTime>
 <VideoSegment id="shot-01v">
 <StructuralUnit href="http://www.ebu.ch/mpeg/AVDP/StructuralUnitCS:3"/>
 <MediaTime>
 <MediaIncrTimePoint>0</MediaIncrTimePoint>
 <MediaIncrDuration>1000</MediaIncrDuration>
 </MediaTime>
 <!-- You can describe video feature of this VideoSegment here -->
 <VisualDescriptor xsi:type="DominantColorType">
 <SpatialCoherency>31</SpatialCoherency>
 <Value>
 <Percentage>31</Percentage>
 </Value>
 </VisualDescriptor>
 </VideoSegment>
</VideoSegment>
</Description>
VAMP Client

- Java client application
- no need to upload files
- enables batch processing
- http://vamp.joanneum.at/client.html
- sample command line for semantic and temporal validation against AVDP

```
java -jar VAMPClient.jar -if mydocument.xml -v v2 -pt AVDP -svt both
```

- outputs vamp_summary.html and an HTML file with detail results for each file validated
Other useful resources

- MaP7 MPEG-7 schema search engine (v1 only)
 - http://www.tom.comm.waseda.ac.jp/map7/

- very useful XSLT reference
 - http://zvon.org/comp/m/xslt.html
The research leading to these results has received funding from the European Union’s Seventh Framework Programme under the grant agreements no. 215475, “2020 3D Media – Spatial Sound and Vision” (http://www.20203dmedia.eu), no. 231161, “PrestoPRIME” (http://www.prestoprime.eu) and no. 287532, “TOSCA-MP” (http://tosca-mp.eu).