
© TOSCA-MP consortium: all rights reserved page i

Networked Media

Search Engine,

Visualization, and

User Feedback

Deliverable D3.4

TOSCA-MP identifier: Networked Media Search Engine, Visualization, and
User Feedback v3

Deliverable number: D3.4

Author(s) and company: Carlos Ruiz, José Manuel López (PLY)

Bart Vandenbroucke, Mike Matton (VRT)

Aparna Nurani Venkitasubramanian, Marie-Francine
Moens (KUL)

Internal reviewers: Marie-Francine Moens (KUL)

Work package / task: WP3

Document status: Final

Confidentiality: Public

Version Date Reason of change

0.1 2013-10-15 Table of contents as discussed at Trento plenary meeting

0.3 2014-03-15 Input in Section 3, Section 4, and Section 5

0.4 2014-03-20 Introduction and Conclusions. Final modifications.

0.5

1.0

1.1

2014-03-30

2014-04-03

2014-05-26

Update after quality assessment review

Final version

Updated API description ï Final version

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page ii

Acknowledgement: The research leading to these results has received funding from the European
Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 287532.

Disclaimer: This document does not represent the opinion of the European Community, and the
European Community is not responsible for any use that might be made of its content.

This document contains material, which is the copyright of certain TOSCA-MP consortium parties, and
may not be reproduced or copied without permission. All TOSCA-MP consortium parties have agreed to
full publication of this document. The commercial use of any information contained in this document
may require a license from the proprietor of that information.

Neither the TOSCA-MP consortium as a whole, nor a certain party of the TOSCA-MP consortium
warrant that the information contained in this document is capable of use, nor that use of the information
is free from risk, and does not accept any liability for loss or damage suffered by any person using this
information.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page iii

Table of Contents

Table of Contents ... iii

List of Figures ... iv

List of Tables ... v

1 Executive Summary ... 6

2 Introduction ... 7

2.1 Purpose of this Document .. 7

2.2 Scope of this Document.. 7

2.3 Status of this Document.. 7

2.4 Related Documents .. 7

3 Networked Media Search Engine v3 ... 8

3.1 Main components ... 8
3.1.1 Semantic Content Annotation .. 8
3.1.2 Semantic Indexing ... 12
3.1.3 Semantic Search Engine ... 14

3.2 The Networked Media Search and Indexing Services ... 15
3.2.1 Indexing service .. 16
3.2.2 Search service .. 20

4 New Visualization Paradigms .. 24

4.1 Final Exploratory-based User Interface for result presentation .. 24
4.1.1 Ontology Relationship Viewer .. 28
4.1.2 Exploratory-based Ontology Navigation ... 33

4.2 Visual Clustering Method as an alternative search view .. 35
4.2.1 Outline... 35
4.2.2 Components .. 36
4.2.3 Benefits of visual clustering ... 39

4.3 Visual summary of events... 41
4.3.1 Outline... 41
4.3.2 Approach ... 41

5 Exploiting Implicit and Explicit mechanisms .. 43

6 Conclusions .. 45

7 References .. 46

8 Glossary .. 47

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page iv

List of Figures

Figure 1 - Overview of the annotation architecture .. 8

Figure 2 ï NLP pipeline for annotation .. 9

Figure 3 - Named entity recognition by gazetteers .. 11

Figure 4 - Named entity recognition by ontologies .. 12

Figure 5 ï Architecture for indexing ... 13

Figure 6 ï Steps for indexing annotations ... 14

Figure 7 ï Networked Media Search Engine: Main components .. 14

Figure 8 ï Steps for user queries in the Semantic Search Engine .. 15

Figure 9 ï Exploratory-based User Interface for Search ... 24

Figure 10 ï Exploratory-based User Interface for Search: main panel in the user interface 25

Figure 11 ï Search results ... 26

Figure 12 ï Filtering with asset features .. 27

Figure 13 ï Found terms for a media asset in the result list .. 27

Figure 14 - Playing a media asset with found terms .. 28

Figure 15 ï Search results with the Ontology Relationship Viewer ... 29

Figure 16 - Relationship Viewer filters ... 29

Figure 17 - Relationship Viewer filter ... 30

Figure 18 - Nodes filter... 30

Figure 19 - Categories filter ... 30

Figure 20 - Selected terms for filtering ... 31

Figure 21 ï Filtering by using the most relevant terms .. 31

Figure 22 ï Advanced search panel .. 32

Figure 23 - Networked Media Search Engine with several filters and operators 32

Figure 24 ï Browse panel .. 33

Figure 25 ï Relation contextual tip .. 33

Figure 26 ï Contextual panel to select entities in the query .. 34

Figure 27 ï Browse panel featuring related instances for a concept ... 34

Figure 28 ï Adding restriction from the browse panel ... 35

Figure 29 ï Using the suggestions box in the browse panel ... 35

Figure 30 - GUI of the new visualization approach, with numbered parts. Query ómiddletonô, clustering
by the CEDD .. 38

Figure 31 - GUI of the new visualization approach. Subclustering of cluster 1 in Figure 30 38

Figure 32 - GUI of the new visualization approach. Query ónieuwsô, clustering by the CSD 39

Figure 33 - GUI of the new visualization approach. Query ówilliamô, clustering by the CSD 40

Figure 34 - GUI of the new visualization approach. Query ómiddletonô, clustering by the EHD 40

Figure 35: Illustration of the summary of key events ... 42

Figure 36 - Cosine similarity function ... 43

Figure 37 ï Implementation oft he TF-IDF scoring function by the Lucene framework 43

file:///C:/Users/baw/AppData/Local/Temp/TOSCAMP-D3.4-PLY-Networked_Media_Search_Engine,_Visualization,_and_User_Feedbackv_1.01.docx%23_Toc384314978

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page v

List of Tables

Es konnten keine Einträge für ein Abbildungsverzeichnis gefunden werden.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 6

1 Executive Summary

D3.4 describes the third and final version of the service-based semantically driven search engine for
audio-visual content, the new paradigms for results presentation, and definition of implicit and explicit
feedback mechanisms.

Firstly, the document provides an incremental and final description of the technical information with
regards to the Networked Media Search Engine, including the indexing and search services. Secondly,
it describes the user interface for presenting the results of the Networked Search Engine including some
new paradigms supporting the clustering of search results and the visual summary of events. Thirdly, it
provides information about the exploitation of the implicit and explicit mechanisms to modify the ranking
of results.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 7

2 Introduction

2.1 Purpose of this Document

D3.4 describes the final versions of the services and tools provided by WP3: the final version of the
service-based semantically driven search engine for audio-visual content, new paradigms and
approaches for results presentation and for verifying the results of feature extraction services, and
definition of mechanisms to gather explicit user feedback about the interestingness of media assets.

Prior to this document, D3.2 and D3.3 contained an initial description and initial version of the different
back-end components of the Networked Media Search Engine, including the indexing and search
component, but also the connection with some source of metadata (e.g. the mammie platform for
essence and basic metadata or some feature extraction services such as concept detection and quality
analysis).

D3.3 is divided into three main parts:

¶ The first section provides technical information regarding the Networked Media Search Engine,
including the exposed web services for indexing and search.

¶ The second section describes the user interface for presenting the results of the Networked
Search Engine including some new paradigms supporting an exploratory-based approach.
Furthermore, it also provides information about the clustering view, an alternative and
complementary ways of displaying the results of search.

¶ The third section outlines different methods to customize the scoring function in the ranking
algorithm depending on implicit and explicit mechanisms based on user feedback.

2.2 Scope of this Document

Researchers, Software Architects, Developers

2.3 Status of this Document

Final

2.4 Related Documents

Before reading this document it is recommended to be familiar with the following documents:

¶ D3.2 ï Networked media search engine v1

¶ D3.3 ï Networked media search engine v2

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 8

3 Networked M edia Search Engine v3

3.1 Main components

The Networked Media Search engine provides the mechanisms to analyse and annotate multimedia
assets at different level of details ïfrom low-level multimedia features to semantic concepts, for
exampleï and to perform precise and efficient searches. Therefore, as any other information retrieval
system, the life cycle of the Networked Semantic Search Engine covers the following steps:

¶ Annotation and Indexing. During this step, available resources are analysed, low and high level
metadata is extracted, enhanced with semantic information, and stored to ease its further
retrieval.

¶ Semantic Search. In order to overcome the limitations of the keyword-based approaches,
different processes from the Natural Language Processing and Semantic Web are applied to
determine the meaning and scope of the query at hand. The userôs query in natural language is
analysed to determine entities and actions and how they are related based on a number of
general-purpose and domain ontologies to enrich the query at hand and improve the accuracy
and recall of the results.

3.1.1 Semantic Content Annotation

This section describes the process of semantic annotation of content and indexing with special
emphasis on how the use of Natural Language Processing and Semantic Web technologies are
exploited to improve the results of the overall process. Just as a reminder, traditional systems are only
based on indexing textual content and keywords annotation. However, exploiting the semantics of the
query and its relation with the domain can offer more accuracy and recall to the results. Such semantic
mechanisms need to be incorporated into the complete search life cycle: annotation, indexing, and
search.

Figure 1 - Overview of the annotation architecture

GATE-like architecture

Annota tion c ompone nts

Module s

Input set

Annotated document

Form at ha ndle r

Doc ument

Tokenizer

Lematizer NER

Sentence
splitting

Language

Gazetteer

OER

POM

POS tagging

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 9

Figure 1 outlines the high-level architecture of the semantic content annotation system. The annotation
process is composed by a number of components with the aim of providing Natural Language
Processing (NLP) and Semantic Web functionalities. Its architecture is designed and implemented on
the GATE (General Architecture for Text Engineering) framework where a pipeline per supported
language (English, Dutch, Italian, German, and Spanish) has been implemented. GATE includes a
number of basic components to support the processing of textual information (tokenizers, stemmers,
POS tagging, etc.) as well as other linguistic resources to deal with several languages. In addition to
those linguistic resources, a number of additional modules have been designed and implemented to
support semantic-based named entity recognition for annotation. In order to deal with the semantic
annotations, the Playence Ontology Manager (POM) is the component providing all basic operations
needed to deal with ontologies, namely object creation, update, deletion, and query. This component is
designed to work with ontologies in RDF and OWL. The Playence Ontology Manager can access the
ontologies stored in local repositories (file-based ontologies) or external repositories offering access
through SPARQL. For the latter, the component implements the Sesame SPARQL API. Finally, these
elements have been connected to the indexing architecture based on Solr to exploit advanced
linguistics and semantic annotation at indexing time.

Figure 2 ï NLP pipeline for annotation

In terms of the NLP pipeline used to analyse and annotate all textual resources (e.g. transcripts,
subtitles, labels, description of media) is described in Figure 2:

Language identification: In a multi-language setting, the ability to identify automatically the language
of the content is key. This step is able to recognize the language of the textual to apply the
corresponding language setting, resources and techniques.

Tokenization: This process divides a stream of text (e.g. subtitles) into smaller pieces called ñtokensò.
These tokens can be single words, symbols, punctuation marks, etc. In most languages there are
words that appear profusely in every text (e.g. articles, prepositions, conjunctions) but convey little
meaning. As search engines are based on the relevance of query words and its frequency in indexed
documents, these words are removed in the indexation and querying processes to avoid returning
documents that are not relevant to the query terms (i.e. improve precision). The output of this process is
the centrepiece for the parsing process.

Word decomposition: Some languages such as German, Japanese, Russian or Dutch form words by
concatenating simpler ones. For example Wolkenkratzer, ñskyscraperò in Enlgish, is formed by the
words ñwolkenò meaning ñcloudsò and ñkratzerò meaning ñscraperò. Word decomposition provides the

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 10

means to decompose complex words into their basic components, for improved query processing and
document matching.

Stemming: The stemming process is the responsible for reducing tokens to its root or stem form. In
particular during the indexing process words as ñreduceò, ñreducingò, ñreducesò, ñreducedò are identified
and normalized to the stem ñreduceò. Later in the query expansion phase the same process is applied to
the query terms identifying any document that complies with the stem form.

Lemmatization: Lemmatization is a broader process in which the system is able to identify the lemma
of the word and its part of speech, such as whether the lemma represents a noun, and adverb, a verb,
etc. For example, ñmeetingò could be a verb or a noun, depending on the context. Lemmatization
therefore helps the contextualization of information in a given document.

Phrasing: While stemming and lemmatization are concerned with detecting single words, phrasing
deals with identifying common expressions formed by more than one word (i.e. ñfree of chargeò or
ñnatural gasò). This identification allows for a better disambiguation in the query and matching
processes.

POS Tagger: It is also called grammatical tagging or word-category disambiguation, is the process of
marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its
definition, as well as its contextði.e. relationship with adjacent and related words in a phrase, sentence,
or paragraph

Named Entity Recognition by gazetteers module (Figure 3): This component offers the means to
identify well-known entities, like people names, locations, dates or figures, to name but a few. This
allows the system to automatically add useful information to the indexed document base, as well as
disambiguation power. The system can be fed with generic dictionaries, specific grammars, or be
extended with private dictionaries thereby precisely meeting customer needs.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 11

Figure 3 - Named entity recognition by gazetteers

This component is an extension of the module provided by GATE, where there are some similar or
related modules. However, the component was implemented to reduce memory consumption and
allowing modifications at runtime (e.g. new non-recognized entities can be fed into the system without
stopping the execution).

This component runs in two steps: firstly, a configuration phase to process and index all terms available
in the gazetteers to ensure performance efficiency; secondly, documents are processed to extract
entities and annotating lemmas, tokens, and POS tagging.

Named entity recognition by ontologies module: This component is in charge of the Ontology Entity
Recognition (OER) - it finds and annotates terms within documents corresponding to entities in the
domain ontologies. Similar to the previous named entity recognition by gazetteers, this component
requires two steps: firstly, it requires having an index with all the available normalized entities within the
ontology; secondly, documents are processed to extract tokens corresponding to entities in the
ontology.

Input set

Linguistic annotations

Gazetteer

Gazetteer Annotations

Tokens ite rator

Doc ument

Gazette er Gazette ers-
based inde x

Gazette er
tr ansf orm er

Linguistic annotations + NER by Gazetteer

Tok en Lemma POS
tagging

 Gazette er-
based

entitie s

Gazette ers-
based Ontolo y

Inde x generator

POM

Tok en Lemma POS
tagging

Doc ument

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 12

Figure 4 - Named entity recognition by ontologies

3.1.2 Semantic Indexing

The indexing process (Fehler! Verweisquelle konnte nicht gefunden werden.) takes all the available
annotations (semantics, linguistics, low-level features annotations) extracted from documents in
previous steps and creates an index for later retrieval. Technology speaking, it uses Solr as search
engine which offers good performance results for huge volumes of data. It supports several formats: rich
documents (PDF, Microsoft Officeé), connection with databases, Java objects and XMLs (with a
structure equal to the index). As part of the indexation process, we designed an index to contain all
available types of annotations described (linguistics and semantics) but also those coming from low-
level analysis service.

Input set

Linguistic + NER by Gazetteer annotations

OER

Annotations

Tokens ite rator

Ontologie s Ontology-
based inde x

Ontology-ba sed inde x generator

Linguistic + NER by Gazetteer + NER by Ontology annotations

Doc Tok en Lema POS
tagging

OERGazette er NER

POM

Tok en Lema POS
tagging

Gazette er NERDoc

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 13

Figure 5 ï Architecture for indexing

Following the same approach as in the Semantic Content Annotation, Figure 6 shows the different steps
to undertake the semantic indexing process. Once all the annotations are generated, they are fused
within the internal system ontologies and semantically expanded with related entities, relationships, and
synonyms to improve the retrieval system. Moreover, other automatic annotations are generated so
support the dynamic facets, the tag cloud, etc.

Input set

Indexer

Doc ument ha ndle r

Annotations

Semantic Annotations

OER

Linguistic s annota tions Solr

Annotations

Relevance annotations

Heuristic s Linguistic s

Semantic expa nsion

Semantic inde x

Doc ument

Enric hed OER

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 14

Figure 6 ï Steps for indexing annotations

3.1.3 Semantic Search Engine

The high-level architecture and main components of the Semantic Search Engine is depicted in Figure
7. The Semantic Search Engine is composed of several modules, which apply different mechanisms to
analyse and improve user queries by exploiting concepts and relationships within ontologies.

Figure 7 ï Networked Media Search Engine: Main components

Semantic Searc h Engine

Semantic exte nsions

UI

Inde x

Basic searc h exte nsions

Query a nalyze r (e xte nsion)

Relationship
Manager

Proba bilistic
module

Langua ge
detector

Semantic que ry
expansion

Annota tion
module

Ontologie s

REST API

Exte rna l Servic es

REST API

Ontology-ba sed Inde x

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 15

Every time a new user query arrives into the systems, the Semantic Search Engine runs a number of
steps (Figure 8):

¶ Language detector: this module is responsible for detecting the query language to apply the
proper linguistic resources of each language

¶ Query Analyzer: this module is responsible to analyse the free text-based query and find which
terms are likely to be semantic elements (entities and relationships) within the ontology. By
exploiting such information, the semantic query expansion engine can apply different heuristics
to expand the query at hand with other related entities.

¶ Semantic query expansion: this module is in charge of expanding free-text based queries
enhanced by the query analyser with other related entities to improve the recall, and in most of
the cases, the accuracy of the query retrieval.

¶ Relationship Manager: this module is in charge of creating the logical representation of a
relationship graph with related concepts and instances given a query. It is used by the graphical
component to allow both navigation and filtering based on the concepts and relationships.

¶ Probabilistic Module: this module provides different mechanisms to show summaries of a result
set and apply filtering (e.g. an overview of tags within a result set)

Figure 8 ï Steps for user queries in the Semantic Search Engine

The combination of these elements makes it possible to perform document summaries, document
classification, syntactic annotation, and identification of named entities and other features. Relevance
algorithms are used in the retrieval of related documents based on term appearance frequency and the
distance of the terms of the query in these documents. Moreover, within the semantic annotation and
indexing, semantic information is analysed and exploited through the use of ontologies and the explicit
and implicit information inferred with the use of reasoning engines. This process allows capturing and
extracting meaning from the user query and thus, the retrieval of documents can be much more precise.

3.2 Th e Networked Media Search and Indexing Services

This section describes the Indexing, Search, and Annotation functionalities exposed as REST services
provided by PLAYENCE as part of the TOSCA-MP project. Based on previous requirements the
architecture of these services is designed to be highly flexible and extensible following a Service-
Oriented Approach (SOA) principle. It tries to address next fundamental principles:

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 16

¶ Decoupling of all parts of the system. Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each other. When it is
possible the components will be exposed as a service, to allow easy integration with third party
systems.

¶ Extensibility so that components and services can be easily adapted for specific use cases.

¶ Modularity so that components and services can be assembled in many ways, enabling
applications to scale up as well as scale lean.

¶ Abstraction ï Beyond descriptions in the service contract, services hide logic from the outside
world. Each service defines a clear interface that is the contract to be used.

¶ Reusability ï Logic is divided into services with the intention of promoting reuse.

¶ Autonomy ï Services have control over the logic they encapsulate.

The architecture is inspired by SOA principles packaging functionality as a suite of inter operable
services that can be used within multiple, separate systems from several domains.

From now on, the document uses the following naming conventions:

[PLY_URL_BASE] = http://tosca-mp.playence.com/

3.2.1 Indexing service

Introduction

The Indexing Service contains methods to index media assets and its metadata stored in the TOSCA-
MP infrastructure so that they are available for later searches. The service interface is offered in two
different flavours:

¶ Simplified API: it offers a number of operations required by the TOSCA-MP project and following
the guideline for the components of the architecture (e.g. expected protocol, http code).

¶ Extended API: it offers a number of generic operations for different set-ups beyond the project
and low-level access to the Indexing Service and its internal workflows (e.g. current step,
execution time, pause and abandon commandsé).

Simplified API

The following methods provide technical information about the methods available in the Simplified API
of the indexing service.

Requesting a media asset indexing

URL: [PLY_URL_BASE]tosca-services/indexing-service/startIndexing

Description: This method starts the indexing process for a media assets stored in the mammie platform

Method: POST

Parameters:

¶ drf_id: identifier of the media asset in the mammie platform

Responses: Returns a simplified XML with the identifier of the indexing process. If something goes
wrong, it returns a error code and message

¶ Success: 200 OK, <indexing-service><joibId>JOBID</jobId><indexing-service>

¶ Wrong drf_id: 400 Bad request, ñWrong inputò

¶ Other errors: 500 Internal Service Error

Status of a media asset indexing

URL: [PLY_URL_BASE]tosca-services/indexing-service/checkStatus

Description: This method provides the status of an indexing process

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 17

Method: GET

Parameters:

¶ jobId: identifier of the indexing instance

Responses: Returns a simplified XML with the status of the indexing process.

¶ Success: 200 OK, <indexing-service><status =òSTARTED/COMPLETEDò> <indexing-service>

¶ Error during indexing: 500 Internal Server Error, <indexing-service><status
=òFAILEDò><errorMessage>é</errorMessage><indexing-service>

¶ Other errors: 500 Internal Service Error

Usage example of the Simplified API

Requesting a media asset indexing

Request example:

curl -d drf_id=tcmp:52c74630-2cc0-0130-6061-4252e56383ba http://tosca-mp.playence.com/tosca-
services/indexing-service/startIndexing

Response:

200 OK

<indexing-service><jobId>4</jobId></indexing-service>

Status of a media asset indexing

Request example:

curl http:// tosca-mp.playence.com/tosca-services/indexing-service/checkIndexing?jobId=4

Response:

200 OK

<indexing-service><status="COMPLETED"/></indexing-service>

Extended API

The following methods provide technical information about the methods available in the Extended API of
the indexing service. As already said, the indexing service contains methods to index media assets and
its metadata stored in the TOSCA-MP infrastructure so that they are available for later searches. Since
such metadata was initially stored in the Mammie server provided by VRT, and then, in the Distributed
Repository Framework (DRF) provided by DTO and deployed as part of the TOSCA-MP infrastructure,
the Extended API of the indexing service supports requesting the indexing of metadata stored in both
systems.

Requesting information about available indexing service

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaOneImporter.json

Description: This method provides information about the available instances of the indexing service for
the Mammie server

Method: GET

Responses: JSON with information about the indexing service (e.g. the number of indexing instances
running)

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaDRFOneImporter.json

Description: This method provides information about the available instances of the indexing service for

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 18

the DRF server

Method: GET

Responses: JSON with information about the indexing service (e.g. the number of indexing instances
running)

Requesting a media asset indexing

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaOneImporter.json

Description: This method starts the indexing process for a media assets stored in the mammie platform

Method: POST

Parameters:

¶ mammie_id: identifier of the media asset in the mammie platform

Responses: JSON with information about the indexing instance

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaDRFOneImporter.json

Description: This method starts the indexing process for a media assets stored in the DRF platform

Method: POST

Parameters:

¶ drf_id: identifier of the media asset in the DRF platform

Responses: JSON with information about the indexing instance

Status of a media asset indexing

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaOneImporter/{indexingProcessID}

Description: This method provides the status of an indexing process from the Mammie server

Method: GET

Parameters:

¶ indexingProcessID: identifier of the indexing instance

Responses: JSON with information about the status of the indexing instance. It indicates the status of
the indexing process:

¶ "status" : "COMPLETED",

¶ "status" : "FAILEDò

¶ "status" : "EXECUTING"

URL: [PLY_URL_BASE]tosca-services/batch/jobs/toscaDRFOneImporter/{indexingProcessID}

Description: This method provides the status of an indexing process from the DRF server

Method: GET

Parameters:

¶ indexingProcessID: identifier of the indexing instance

Responses: JSON with information about the status of the indexing instance. It indicates the status of
the indexing process:

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 19

¶ "status" : "COMPLETED",

¶ "status" : "FAILEDò

¶ "status" : "EXECUTING"

Usage example of the Extended API

The following example shows the required service calls to index a media asset from the Mammie server
for later retrieval by the search service. Indexing elements stored in the DRF will require analogous
steps.

Requesting information about available indexing service

Request example:

curl http://tosca-mp.playence.com/tosca-services/batch/jobs/toscaOneImporter.json

Response:

{"job" : {

 "resource" : "http://tosca-mp.playence.com/tosca-services/batch/jobs/toscaOneImporter.json",

 "name" : "toscaOneImporter",

 "jobInstances" : { }

 }

 }

Requesting a media asset indexing

Request example:

curl -d jobParameters=mammie_id=tcmp:52c74630-2cc0-0130-6061-4252e56383ba http://tosca-
mp.playence.com/tosca-services/batch/jobs/toscaOneImporter.json

Response:

{"jobExecution" : {

 "resource" : "http://tosca-mp.playence.com/tosca-services/batch/jobs/executions/0.json",

 "id" : "1",

 "name" : "toscaOneImporter",

 "status" : "STARTED",

 "startTime" : "",

 "duration" : "",

 "exitCode" : "UNKNOWN",

 "exitDescription" : "",

 "jobInstance" : { "resource" : "http://tosca-mp.playence.com/tosca-
services/batch/jobs/toscaOneImporter/0.json" },

 "stepExecutions" : {

 "bulkImportSingleStep" : {

 "resource" : "http://tosca-mp.playence.com/tosca-services/batch/jobs/executions/0/steps/0.json",

 "status" : "STARTED",

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 20

 "exitCode" : "EXECUTING"

 }

 }

 }

}

Status of a media asset indexing

Request example:

curl -s http://tosca-mp.playence.com/tosca-services/batch/jobs/toscaOneImporter/0.json

Response:

{"jobInstance" : {

 "id" : 0,

 "jobName" : "toscaOneImporter",

 "jobParameters" : {

 "mammie_id" : "tcmp:52c74630-2cc0-0130-6061-4252e56383ba"

 }

 },

 "jobExecutions" : {

 "0" : {

 "status" : "COMPLETED",

 "startTime" : "11:16:41",

 "duration" : "00:00:08",

 "resource" : "http://tosca-mp.playence.com/tosca-services/batch/jobs/executions/0.json"

 }

 }

}

3.2.2 Search service

Introduction

The Search service allows the retrieval of multimedia assets from the TOSCA-MP platform combining
different underlying technology such as full-text search, semantic query module, probabilistic
enhancement, synonym query expansion, hit highlighting, etc. The search engine is highly scalable,
providing distributed search and index replication as well as navigation features.

API

The following methods provide technical information about the methods available in the indexing
service.

Setting credentials

URL: [PLY_URL_BASE]media/mvc/login?j_username=<username>&j_password=<password>

Description: This service will get the user to have access to the rest of the services by providing a valid
user and a valid password. This method should be requested by a POST action and the data will be
passed as parameters in the URL.

http://localhost:8080/search/api/login?j_username

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 21

Method: POST

Parameters:

¶ j_username: username of the user logging in.

¶ j_password: password of the user logging in.

Responses:

¶ {"status": true}: The user has gain access to the application.

¶ {"status": false, "error": "Bad Credentials"}: The user has received an error while logging in

Get empty search criteria

URL: [PLY_URL_BASE]media/mvc/search-service/empty-criteria

Description: Making a GET request to this URL will return an empty search criteria. This object will
contain the different elements that will contain the information needed in order to generate the SOLR
query. It's used to get an interface without a query in order to render it in a system.

Method: GET

Header: Accept: application/json

Content-type: application/json

Payload: {} (an empty JSON object)

Responses: an empty JSON object for setting the search criteria

The JSON object contains a numbers of elements and arrays of elements with modifiers being used to
build a complex semantic query in the underlying search system. These elements are:

¶ InputTextMap: It's a map that contains all the textfields object that will be in the interface.

¶ InputHiddenMap: It's a map that contains the inputHidden contained in the interface. This input
hidden will be the different modifiers of the SOLR query.

¶ SelectOnesMap: It's a map that will contain the entities selected from the interface.

¶ RangeTerms: it's a map that will contain the facets (terms with a range) selected from the user
interface.

¶ RangeTermsInit: it's a map that will contain the initial values for facets selected from the
interface.

¶ Checkbox: it's a map that will contain the checkbox inputs that will be in the interface.

¶ Page, pageAnnotation, resultPerPageAnnotations, resultsPerPage, actualPage: Elements
related to the pagination.

¶ AdditionalParams: This map contains information for the query that usually is passed in as
params in action methods in DocumentFormActions. This information is dynamically generated
and cannot be mapped to any in JSF element inputHiddens, inputTexts, etc. The information
provided in the additionalParams is passed to component as a parameter. Pre-search methods
in DocumentFormContainer are in charge to retrieve this parameter and put it in
additionalParams.

¶ MaxValues, MinValues: Maximum and minimum values for the sliders.

¶ OntologyEntityContainer: This object contains the list of entities selected for search and or not
concepts.

http://localhost:8080/search/api/login?j_username

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 22

¶ RequestScopeAnd: This map contains those parameters that must be appear in the results. . It
will be added as "AND" to the query, the key is the name of the field and the value is the value
for that field.

¶ RequestScopeNot: This map contains parameters that have request scope and will be added
as "NOT" to the query, the key is the name of the field and the value is the value for that field.

¶ OrvFacets: The facet fields that will be used in the construction of the ORV.

¶ LastOrvJSON: The JSON generated in the last search, if the user filters the ORV have been
used we can reset easily the ORV.

Search

URL: [PLY_URL_BASE]media/mvc/search-service/search

Description: This method, given a search criteria as a payload will return two objects, a modified search
criteria object and another object with the results of this search.

Method: POST

Header: Accept: application/json

Content-type: application/json

Payload: As a payload in this method, a JSON object with the Search Criteria object must be passed to
it.

Responses: The response in this method will be two JSON objects:

1) The JSON Search Criteria object already passed to the service but with some of the parameters
modified so it will match the current search.

2) A JSON Search Result Object containing all the documents that are matching the query at
hand. The last object will be an array of objects containing:

{

"id": null,

"documentFields": {

"documentType": "video",

"internalURI": "/uri/tes/document1",

"description": "Lorem ipsum"

},

Along with the search Results, the JSON Search Criteria Object will also contains some other
parameters:

o numFound: Number of results found.
o ActualPage: The actual page of the SOLR search.
o relatedTags: Tags related to the search performed.
o graphXML: The Ontology Relationship Viewer graph in XML.
o GraphJSON: The Ontology Relationship Viewer graph in JSON.
o singleResult: It´s a flag which marks when only one result is expected.
o actualSearch: What the search was.
o spellChecking: Sentence to show in the interface about spell checking.
o SpellCheckingFields: The different fields inside the spell checking.
o filterTags The tags that had been used to filter results.
o ComeFromAdvancedSearch: A flag that shows whether it comes from advance search.
o MinValues: Minimum values for the range elements.
o MaxValues: Maximum values for the range elements.
o RelatedSearches: List of related searches to the original search.
o NumberOfPages: Total number of pages.

http://localhost:8080/search/api/login?j_username

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 23

o pageList: The list of pages of the search.

Usage example

The following example shows the required service calls to query the Search Service given a query.

Setting credentials

Request example:

curl -H 'Content-Type: application/x-www-form-urlencoded' ïc cookies.txt -X POST http://tosca-
mp.playence.com/media/mvc/login -d "j_username=demo" -d "j_password=toscatosca"

¶ Where ñdemoò and ñtoscatoscaò are the username and login

¶ Where cookies.txt will store the information about the session.

Response:

{"status": true}

{"status":500,"code":500,"message":"UserDetailsService returned null, which is an interface
contract violation","developerMessage":"UserDetailsService returned null, which is an interface
contract violation","moreInfoUrl":"mailto:development@playence.com"}

{"status": false, "error": "Bad Credentials"}

Get empty search criteria

Request example:

curl http://tosca-mp.playence.com/media/mvc/search-service/empty-criteria

Response: A JSON Object with the search criteria

Search

Request example:

curl -X POST -d @searchcriteria.json -b cookies.txt -H 'Content-Type: application/json'
http://tosca-mp.playence.com/media/mvc/search-service/search

¶ Where cookies.txt stores the information about the session obtained during the
credential setting

¶ Where searchcriteria.json is the JSON object with the search criteria as follows:

{"inputTextMap": {"text_anno": {"id": "text_anno", "value": "Catherine" } },"selectOnesMap":
{"location_feature": {"id": "location_feature" }},"checkBox": {"providedBy_feature": {"id":
"providedBy_feature" } }}

Response: List of results

http://ec2-54-247-1-117.eu-west-1.compute.amazonaws.com:8080/media/mvc/login
http://ec2-54-247-1-117.eu-west-1.compute.amazonaws.com:8080/media/mvc/login
http://ec2-54-247-1-117.eu-west-1.compute.amazonaws.com:8080/media/mvc/search-service/empty-criteria
http://ec2-54-247-1-117.eu-west-1.compute.amazonaws.com:8080/media/mvc/search-service/search

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 24

4 New Visualization Paradigms

4.1 Final Exploratory -based User Interface for result presentation

Professional media production requires cutting edge contextualization and annotation technology for the
daily activities to shield users from the complexity and heterogeneity of the underlying media assets. In
particular, new trends have remarked the importance of designing visual tools to browse the content
available allowing exploratory analysis. This affords the means to automatically discover relationships
living in information assets, while bringing structure to plain text documents, audios and videos.
Furthermore, it requires automatically aggregating, organizing and categorizing heterogeneous
information, understanding and recognizing concepts. As a result, users will be able to transparently
search for and within content, reducing the time required to filter results and getting over the limitations
of traditional keyword-based search engines.

The Exploratory-based User Interface has been designed with the clear goal in mind of managing very
large and disparate amounts of information, scattered across content repositories, whilst enabling better
and faster information access, sharing and discovery. The Figure 9 shows how the user interface of
Exploratory-based User Interface for Search looks like:

Figure 9 ï Exploratory-based User Interface for Search

The user interface is divided into four main regions for querying the system, displaying results, applying
filters, and setting advanced restrictions to the search. These regions are:

Functionality selector, located on the top left part of the screen: Three icons for permit switching into the
main modes of the system ï Browse, Ingest and Manage. Most of the functionality that the users deal
with when handling the existing assets is related to the Browse mode, while in Ingest mode users can
add new assets to the system.

Search and browse tools, several controls on the top part of the screen, mostly related to the search
and browsing functionality:

- The User query field, in which users can query the system. The system is able to capture the
parts of the query that are relevant from the domain perspective and use them to retrieve pieces
of knowledge from the corpus.

- In addition to the query field, an ñAdvanced searchò is offered. It also contains several filters,
which help users to narrow the set of results.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 25

- In order to select the type of media, users can use the Media filter. This filter allows them to look
into any kind of media asset, or more specifically, into videos, audios, images or text files.

- There is a button to access the Browse functionality.
- The number of results per page filter allows the user to select how many results they want to

have for every query.
- Current user name logged.
- There is also a Logout option there.

Left panel filters: On the left-hand side of the screen, three different panels permit filtering over the
results:

- The Ontology Group Selector allows selecting the current ontology to work with. It is set to ñAll
ontologiesò by default. By default only the geopolitical ontology is provided.

- The Relationship Viewer helps to refine the search by contextualizing the query made by the
user with existing nodes and relationships present on the documents that are part of the results.

- The Most Relevant Terms filter also allows query refinement but instead of navigating the
knowledge map the user is presented with those terms that are more relevant to his/her search.

- The Advanced Filters allow query definition by using assets features like annotation language,
asset duration or asset file size.

Results area, located on the central part of the system, initially empty when no query has been
performed yet.

Figure 10 shows the main part when querying the system. Users can use the query field to find assets
related to the domain. When queried, the system retrieves results that match the query, and displays
them on the results area. It also shows different visualization tools on the left-hand panel. In the added
filters section, different filters added to the query will be visible. To clean the query and filters it is
necessary to click on the X located at the end of the query box (Clear all and start from the beginning).
Otherwise, every existing filter will be applied to the current query. To perform a query the text must be
written into the Query Box. The automatic Predictive Search, helping the user to complete the query
suggesting terms that are relevant to the domain knowledge assists the user while typing.

Figure 10 ï Exploratory-based User Interface for Search: main panel in the user interface

Users can use the query field to find assets related to the domain. When queried, the system retrieves
results that match the query, and displays them on the results area. It also shows different visualization

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 26

tools on the left-hand panel. The following Figure 11 depicts the search results for a query for ñKate
Middletonò.

Figure 11 ï Search results

On the left side of the screen, several filters can be applied to refine the result set: Via a Relationship
Viewer (see Section 4.1.1), by using the Most Relevant Terms panel, and through Advanced Filters; the
functionality provided by each of those is covered in the subsections below. When the filters are applied,
the results area changes dynamically. Operators and filters can be combined and used along with the
user query, building a powerful, yet flexible, system for querying the contents of the platform.

Advanced filters related to the asset features are also available. In the example depicted in Figure 12
below, several types of filters allow the user to refine the query in different ways:

¶ By using check boxes for different available languages.

¶ By moving a slider to restrict the values of a particular feature (e.g. duration of the media
asset, i.e. less that two hours in the example)

¶ By using drop-down menus for different features (e.g. concepts detected in a video)

Besides, every time a user queries the system and a list of results is given, the system also includes
where the query appears in each media asset. In Figure 13, the different time points where the terms of
the query can be found are displayed, so that users can easily identify the most relevant parts of the
media set regarding the query at hand.

An additional feature is displayed in Figure 14 where the translation of the transcripts is show as
subtitles. The idea is not to offer a fully automatic translation feature but to support users, who are not
familiar with the language of the video, to understand what the video is about. This feature combines
two noisy steps: firstly, it extracts the transcripts of the audio; secondly, it carries out an automatic
translation of the transcripts. We are aware that the combination will bring a number of errors in the final
output but as the field trials showed, it is recognised as a valid approach to support the understanding of
video in other languages.

Version of
2014-05-26

D3.4 Networked Media Search Engine, Visualization, and
User Feedback

© TOSCA-MP consortium: all rights reserved page 27

Figure 12 ï Filtering with asset features

Figure 13 ï Found terms for a media asset in the result list

